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Reconstruction algorithm for single photon
emission computed tomography and its

numerical implementation

A. S. Fokas†, A. Iserles and V. Marinakis

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, UK

The modern imaging techniques of positron emission tomography and of single photon
emission computed tomography are not only two of the most important tools for studying the
functional characteristics of the brain, but they now also play a vital role in several areas of
clinical medicine, including neurology, oncology and cardiology. The basic mathematical
problems associated with these techniques are the construction of the inverse of the Radon
transform and of the inverse of the so-called attenuated Radon transform, respectively. An
exact formula for the inverse Radon transform is well known, whereas that for the inverse
attenuated Radon transform was obtained only recently by R. Novikov. The latter formula
was constructed by using a method introduced earlier by R. Novikov and the first author in
connectionwith a novel derivation of the inverseRadon transform.Here, we first show that the
appropriate use of that earlier result yields immediately an analytic formula for the inverse
attenuatedRadon transform.We then present an algorithm for the numerical implementation
of this analytic formula, based on approximating the given data in terms of cubic splines.
Several numerical tests are presentedwhich suggest that our algorithm is capable of producing
accurate reconstruction for realistic phantoms such as thewell-knownShepp–Logan phantom.

Keywords: single photon emission computed tomography (SPECT);
attenuated Radon transform; imaging techniques
1. INTRODUCTION

Positron emission tomography (PET) and single
photon emission computed tomography (SPECT) are
two modern imaging techniques with a wide range of
medical applications. Although these techniques were
originally developed for the study of the functional
characteristics of the brain, they are now used in many
diverse areas of clinical medicine. For example, a recent
editorial in the New England Journal of Medicine (Koh
et al. 2003) emphasized the importance of PET in
oncologic imaging. Other medical applications of PET
and SPECT are presented in Lauritzen & Olesen
(1984), Vorstrup et al. (1986), Mazziotta et al. (1987),
Lee et al. (1988), Junck et al. (1989), Reiman et al.
(1989), Mazziotta (1992), Tyler & Byme (1992),
Minoshima et al. (1995), Jonides et al. (1996), Mark
et al. (1996), Andreasen (1997), Hutton (1997),
Tjuvajev et al. (1999), Wackers (1999), Yu et al.
(2000), Bengel et al. (2001), Doubrovin et al. (2001),
Green et al. (2002), Lardinois et al. (2003) and Ost et al.
(2003).

The first step in PET is to inject the patient with a
dose of a suitable radiopharmaceutical. For example, in
brain imaging a typical such radiopharmaceutical is
orrespondence (t.fokas@damtp.cam.ac.uk).
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flurodeoxyglucose (FDG), which is a normal molecule
of glucose attached artificially to an atom of radioactive
fluorine. The cells in the brain, which are more active
have a higher metabolism, need more energy, thus will
absorb more FDG. The fluorine atom in the FDG
molecule suffers a radioactive decay, emitting a
positron. When a positron collides with an electron it
liberates energy in the form of two beams of gamma rays
travelling in opposite direction, which are picked by the
PET scanner. In SPECT one uses photon emitting
radiopharmaceuticals.

Let x1 and x 2 be the Cartesian coordinates in the
plane. In both PET and SPECT the radiating sources
are inside the body, and the aim is to determine the
distribution g (x1, x 2) on a given plane, of the relevant
radiopharmaceutical from measurements made outside
the body of the emitted radiation. By using a
sufficiently large number of planes, the three dimen-
sional distribution can be determined. If f (x1, x 2) is the
X-ray attenuation coefficient of the body, then it is
straightforward to show (Natterer 1986) that the
intensity I outside the body measured by a detector
which picks up only radiation along the straight line L
is given by

I Z

ð
L
e
K
Ð
LðxÞf ds

g dt; ð1:1Þ
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Figure 1. Local coordinates for the mathematical formulation
of PET and SPECT.
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where t is a parameter along L, and L (x) denotes the
section of L between the point (x1, x 2) and the detector.
The attenuation coefficient f (x1, x 2) is precisely the
function measured by the usual computed tomography.
Thus, the basic mathematical problem in SPECT is to
determine the function g (x1, x 2) from the knowledge of
the ‘transmission’ function f (x1, x 2) (determined via
computed tomography) and the ‘emission’ function I
(known from the measurements).

In PET the situation is simpler. Indeed, since the
sources eject particles pairwise in opposite directions
and the radiation in opposite directions is measured
simultaneously, equation (1.1) is replaced by

I Z

ð
L
e
K
Ð
LCðxÞf dsK

Ð
LKðxÞf ds

g dt; ð1:2Þ

where LC, LK are the two half-lines of L with endpoint
x. Since, LCCLKZL, equation (1.2) becomes

I Z eK
Ð
L
f dt

ð
L
g dt:

We recall that the line integral of the function f (x1,x 2)
alongL is preciselywhat is known from themeasurements
in the usual computed tomography. Thus, since both I
and the integral of f (x1, x 2) are known (from the
measurements of PET and of computed tomography,
respectively), the basic mathematical problem of PET is
to determine g (x1, x 2) from the knowledge of its line
integrals.Thismathematical problem is identicalwith the
basic mathematical problem of computed tomography.
1.1. Notation

(i) A point of a line L making an angle q with the
x1-axis is specified by the three real numbers
(t, r, q), where t is a parameter along L, KN!
t!N, r is the distance from the origin to the
line, KN!r!N, and 0%q%2p (figure 1).

(ii) The above parameterization implies that, for a
fixed q, the Cartesian coordinates (x1, x 2) can be
expressed in terms of the local coordinates (t, r)
by the equations (see §2)

x1 Z t cos qKr sin q;

x 2 Z t sin qCr cos q:

)
ð1:3Þ

A function f (x1, x 2) rewritten in local coordi-
nates will be denoted by F (t, r, q),

Fðt; r; qÞZ f ðt cos qKr sin q; t sin qCr cos qÞ:

Thus, F (t,r,q) and G (t,r,q) will denote the
X-ray attenuation coefficient f (x1, x 2) and the
distribution of the radiopharmaceutical g (x1, x 2),
rewritten in local coordinates.

(iii) The line integral of a function f is called itsRadon
transform and will be denoted by f̂ . In order to
compute f̂ , we first write f in local coordinates and
then integrate with respect to t,

f̂ ðr; qÞZ
ðN
KN

Fðt; r; qÞdt: ð1:4Þ
J. R. Soc. Interface (2006)
The line integral of the function g with respect to
the weight f appearing in equation (1.1) is called
the attenuated Radon transform of g (with the
attenuation specified by f ) and will be denoted by
ĝf . In order to compute ĝf , we write both g and f in
local coordinates and then evaluate the following
integral:

ĝf ðr; qÞZ
ðN
KN

eK
ÐN
t

Fðs;r;qÞdsGðt; r; qÞdt: ð1:5Þ

1.2. Mathematical methods

The basic mathematical problem of both computed
tomography and PET is to reconstruct a function f
from the knowledge of its Radon transform f̂ , i.e. to
solve equation (1.4) for f (x1, x 2) in terms of f̂ ðr; qÞ. The
relevant formula is called the inverse Radon transform
and is given by

f ðx1; x 2ÞZ
1

4ip2
ðvx1Kivx 2

Þ

!

ð2p
0

eiq #
N

KN

f̂ ðr; qÞdr
rKðx 2 cos qKx1 sin qÞ

 !
dq;

ð1:6Þ

where KN!xj!N, jZ1, 2 and F denotes principal
value integral.

A novel approach for deriving equation (1.6) was
introduced in Fokas & Novikov (1991), and is based on
the analysis of the equation

1

2
lC

1

l

� �
vx1 C

1

2i
lK

1

l

� �
vx 2

� �
mðx1;x 2;lÞZ f ðx1;x 2Þ;

ð1:7Þ

where l is a complex parameter different than zero. The
application of this approach to a slight generalization of
equation (1.7) can be used to reconstruct a function g
from the knowledge of its attenuated Radon transform
ĝf , i.e. this approach can be used to solve equation (1.5)
for g (x1, x 2) in terms of ĝf ðr; qÞ and f (x1, x 2). The
relevant formula, called the inverse attenuated Radon
transform, was obtained by Novikov (2002) by
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Figure 2. The unit circle.
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analysing, instead of equation (1.7), the equation

1

2
lC

1

l

� �
vx1 C

1

2i
lK

1

l

� �
vx 2

C f ðx1; x 2Þ
� �

mðx1; x 2; lÞ

Z gðx1; x 2Þ: ð1:8Þ

1.3. Organization of the paper

In §2 we first review the analysis of equation (1.7), and
then show that if one uses the basic result obtained in
this analysis, it is possible to construct immediately the
inverse attenuated Radon transform. This provides a
dramatic simplification of the derivation of Novikov
(2002). In §3 we present a new numerical reconstruc-
tion algorithm for SPECT. This algorithm is based on
approximating the given data in terms of cubic splines
(a similar reconstruction algorithm for PET is given in
appendix A). We recall that both the exact inverse
Radon transform as well as the exact inverse attenu-
ated Radon transform involve the Hilbert transform of
the data functions. For example, the inverse Radon
transform involves the function

hðr; qÞZ#
N

KN

f̂ ðr0; qÞ
r0Kr

dr0: ð1:9Þ

Existing numerical approaches use the convolution
property of the Fourier transform to compute the
Hilbert transform and employ appropriate filters to
eliminate high frequencies. It appears that our
approach has the advantage of simplifying considerably
the mathematical formulas associated with these
techniques. Furthermore, accurate reconstruction is
achieved, for noiseless data, with the additional use of
an averaging or of a median filter. Several numerical
tests are presented in §4. One of these tests involves the
Shepp–Logan phantom (Shepp & Logan 1974) (see
figure 3c).

Numerical algorithms based on the filtered back
projection are discussed in Kunyansky (2001), Natterer
(2001), Guillement et al. (2002) and Guillement &
Novikov (2004), while algorithms based on iterative
techniques can be found in Hebert et al. (1988), Liang &
Hart (1988) and Nuyts & Fessler (2003). Spline based
algorithms for computed tomography are presented in
La Rivière & Pan (1998).
2. MATHEMATICAL METHODS

We first review the basic result of Fokas & Novikov
(1991). It will be shown later that using this result it is
J. R. Soc. Interface (2006)
possible to derive both the inverse Radon as well as the
inverse attenuated Radon transforms in a straightfor-
ward manner.

Proposition 2.1. Define the complex variable z by

z Z
1

2i
lK

1

l

� �
x1K

1

2
lC

1

l

� �
x 2; ð2:1Þ

where x1, x 2 are the real Cartesian coordinates KN!
xj!N, jZ1, 2, and l is a complex variable, ls0.
Assume that the function f (x1, x 2) has sufficient decay as
jx1jCjx 2j/N. Let m (x1, x 2, l) satisfy the equation

1

2i

1

jlj2
Kjlj2

� �
vmðx1; x 2; lÞ

v �z
Z f ðx1; x 2Þ;

jljs1; ðx1; x 2Þ2R
2; ð2:2Þ

as well as the boundary condition mZO(1/z) as jx1jC
jx 2j/N. Let lC(q) and lK(q) denote the limits of l as it
approaches the unit circle (figure 2) from inside and
outside the unit disc, respectively, i.e.

lGðqÞZ lim
3/0

ð1H3Þeiq; 3O0; 0%q%2p:

Then

mðx1; x 2; l
GðqÞÞZHPHf̂ ðr; qÞK

ðN
t
Fðt0; r; qÞdt0; ð2:3Þ

where f̂ denotes the Radon transform of f, F denotes
f in the local coordinates (see §1.1), PG denote the usual
projection operators in the variable r, i.e.

ðPGgÞðrÞZ lim
3/0
3O0

1

2pi

ðN
KN

gðr0Þdr0
r0KðrGi3Þ

ZG
gðrÞ
2

C
1

2pi#
N

KN

gðr0Þdr0
r0Kr

; ð2:4Þ

and F denotes the principal value integral.

Proof. Before deriving this result, we first note that
equation (2.1) is a direct consequence of equation (1.7).
Indeed, equation (1.7) motivates the introduction of the
variable z defined by equation (2.1). Taking the
complex conjugate of equation (2.1) we find

�z ZK
1

2i
�lK

1
�l

� �
x1K

1

2
�lC

1
�l

� �
x 2; ð2:5Þ

where �z and �l denote the complex conjugates of z and l,
respectively. Equations (2.1) and (2.5) define a change
of variables from (x1, x 2) to ðz; �zÞ. Using this change of
variables to compute vx1 and vx 2

in terms of vz and v �z ,
equation (1.7) becomes (2.2).

We now derive equation (2.3). The derivation is
based on the following two steps, which have been used
extensively in the field of nonlinear integrable partial
differential equations (see, for example, Fokas &
Gel’fand 1994).

In the first step (sometimes called the direct
problem), we consider equation (2.2) as an equation
which defines m in terms of f, and we construct an
integral representation of m in terms of f, for all complex

http://rsif.royalsocietypublishing.org/
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Figure 3. Test phantoms for the PET algorithm.
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values of l. This representation is

mðx1; x 2; lÞZ
1

2pi
sgn

1

jlj2
Kjlj2

� �ðð
R2

f ðx 01; x 0
2Þ

z 0Kz
dx 01 dx

0
2;

jljs1: ð2:6Þ

Indeed, suppose that the function m (zR, z I) satisfies the
equation

vmðz R; z IÞ
v �z

Zgðz R; z IÞ; z Z z R C iz I;

KN!z R!N; KN!z I!N;

as well as the boundary condition mZO(1/z) as z/N.
Then, Pompieu’s formula (see, for example, Ablowitz &
Fokas 1997) implies

mZK
1

p

ðð
R2

gðz 0
R; z

0
IÞ

z 0Kz
dz 0

R dz 0
I: ð2:7Þ

This equation is the direct consequence of the fact that
since m in equation (2.7) depends on z only through
(z 0Kz)K1, then its dependence on �z can be computed
explicitly using the formula

v �zðz 0KzÞK1 Z 2pidðz 0KzÞ: ð2:8Þ

In our case

g Z
2if

1
jlj2Kjlj2

; dz R dz I Z
1

2i

1

jlj2
Kjlj2

� �
dx1 dx 2;

thus equation (2.7) becomes (2.6).
In the second step (sometimes called the inverse

problem), we analyse the analyticity properties of m

with respect to l, and we find an alternative represen-
tation for m. This representation involves certain
integrals of f called spectral functions. For our problem,
this representation is equation (2.3). Indeed, since m is
an analytic function of l for jljs1 and since mZO(1/l)
as l/N, we can reconstruct the function m if we know
its ‘jump’ across the unit circle:

mðx1; x 2; lÞZ
1

2p

ð2p
0

Jðx1; x 2; q
0Þeiq0

eiq
0
Kl

dq0; ð2:9Þ

where

Jðx1; x 2; qÞZmðx1; x 2; l
CÞKmðx1; x 2; l

KÞ:
J. R. Soc. Interface (2006)
Thus, we need to compute the limits of m as l tends
to lG. As 3/0,

lCH
1

lC
w ð1K3ÞeiqHð1C3ÞeKiq:

Substituting this expression in the definition of z
(equation (2.1)) and simplifying, we find

z 0Kzwðx 01Kx1Þsin qKðx 0
2Kx 2Þcos q

C i3ððx 0
1Kx1Þcos qCðx 0

2Kx 2Þsin qÞ:
ð2:10Þ

The right-hand side of this equation can be rewritten in
terms of the local coordinates r, r 0, t, t 0: Let k and kt

denote two unit vectors along the line L and perpen-
dicular to this line, respectively. Then

x Z tkCrkt

or

ðx1; x 2ÞZ tðcos q; sin qÞCrðKsin q; cos qÞ:
Hence, x1 and x 2 are given by equation (1.3). Inverting
these equations we find

tZ x 2sin qCx1cos q; rZ x 2cos qKx1sin q: ð2:11Þ

Thus, equation (2.10) becomes

z 0Kz wKr0 CrC i3ðt0KtÞ:
Substituting this expression in equation (2.6) and using
the fact that the relevant sign equals 1, we find

mðx1; x 2; l
CÞwK

1

2pi

ðð
R2

f ðx 01; x 0
2Þdx 01 dx 0

2

r0KrKi3ðt0KtÞ ;

3/0; 3O0: ð2:12Þ

Using the change of variables (x1, x 2)4(t, r) defined by
equations (1.3) and (2.11), and noting that the relevant
Jacobian is 1, i.e.

f ðx 01; x 0
2Þdx 0

1 dx
0
2 ZFðt0; r0; qÞdt0 dr0;

we find that the right-hand side of equation (2.12)
equals

K
1

2ip

ðð
R2

F dt0 dr0

r0KðrC i3ðt0KtÞÞ : ð2:13Þ

In order to simplify this expression we split the integral
over dt 0 in the formðN

KN
dt0 Z

ðt
KN

dt0 C

ðN
t

dt0;

http://rsif.royalsocietypublishing.org/
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and note that in the first integral t 0Kt!0, while in the
second integral t0KtO0. Thus, using the second set of
equation (2.4) the expression in (2.13) becomes

K
1

2pi

ðN
KN

#
N

KN
Fðt0; r0; qÞ dr0

r0Kr

� �
dt0

K
1

2

ðN
t

Fðt0; r; qÞdt0 C 1

2

ðt
KN

Fðt0; r; qÞdt0:

Finally, adding and subtracting the integral 1
2

ÐN
t we

find

mðx1; x 2; l
CÞZK

1

2pi

ðN
KN

#
N

KN
Fðt0; r0; qÞ dr0

r0Kr

� �
dt0

C
1

2

ðN
KN

Fðt0; r; qÞdt0K
ðN
t

Fðt0; r; qÞdt0:

The first two terms in the right-hand side of this
equation equal KPKf̂ , hence we find (2.3)C. The
derivation of equation (2.3)K is similar. &

Using equation (2.3) it is now straightforward to
derive both the inverse Radon and the inverse
attenuated Radon transforms. In this respect we note
that the result of proposition 2.1 can be rewritten in the
form

lim
l/lG

vK1
�z

f ðx1; x 2Þ
nðlÞ

� �� �

ZHPHf̂ ðr; qÞK
ðN
t

Fðt0; r; qÞdt0; ð2:14Þ

where

nðlÞZ 1

2i

1

jlj2
Kjlj2

� �
: ð2:15Þ
2.1. The inverse radon transform

Equation (2.3) yields

Jðx1; x 2; qÞ

ZK
1

pi#
N

KN

f̂ ðr0; qÞdr0
r0Kðx 2 cos qKx1 sin qÞ : ð2:16Þ

Equation (2.9) implies

mðx1; x 2; lÞZ K
1

2p

ð2p
0

Jðx1; x 2; qÞeiq dq
� �

1

l
CO

1

l2

� �
:

Substituting this expression in equation (1.7) we find

f ðx1; x 2ÞZ
1

2
ðvx1Kivx 2

Þ K
1

2p

ð2p
0

Jðx1; x 2; qÞeiq dq
� �

:

ð2:17Þ

Replacing in this equation J by the right-hand side of
equation (2.16) we find equation (1.6).
J. R. Soc. Interface (2006)
2.2. The attenuated radon transform

Equation (1.8) can be rewritten in the form

vm

v �z
C

f

n
mZ

g

n
;

where n is defined by equation (2.15). Hence,

v

v �z
m exp vK1

�z
f

n

� �� �� �
Z

g

n
exp vK1

�z
f

n

� �� �

or

m exp vK1
�z

f

n

� �� �
Z vK1

�z
g

n
exp vK1

�z
f

n

� �� �� �
:

Replacing in this equation vK1
�z ðf =nÞ by the right-hand

side of equation (2.14) we find

mðx1; x 2; l
GÞeHPHf̂ ðr;qÞeK

ÐN
t

Fðt0;r;qÞdt0

Z vK1
�z

gðx1; x 2Þ
nðlÞ eHPHf̂ ðr;qÞeK

ÐN
t

Fðt0;r;qÞdt0
� �

:

For the computation of the right-hand side of this
equation we use again equation (2.14), where f is
replaced by g times the two exponentials appearing in
the above relation. Hence,

mðx1; x 2; l
GÞeHP

Hf̂ ðr;qÞeK
ÐN
t

Fðt0;r;qÞdt0

ZHPHeHPHf̂ ðr;qÞĝf ðr; qÞ

K

ðN
t

Gðt0r; qÞeHPHf̂ ðr;qÞeK
ÐN
t0 Fðs;r;qÞdsdt0: ð2:18Þ

Note that the term exp½HPHf̂ � is independent of t 0;
thus this term comes out of the integral

ÐN
t , and

furthermore the same term appears in the left-hand side
of equation (2.18). Hence, when computing the jump
m (x1, x 2, l

C)Km (x1, x 2, l
K), the second term in the

right-hand side of equation (2.18) cancels and we find
that the relevant jump in now given by

Jðx1; x 2; qÞZKe
ÐN
t

Fðt0;r;qÞdt0

! eP
Kf̂ ðr;qÞPKeKPKf̂ ðr;qÞ CeKPCf̂ ðr;qÞPCeP

Cf̂ ðr;qÞ
� �

ĝf ðr; qÞ;

ð2:19Þ
where t and r are expressed in terms of x1 and x 2 by
equation (2.11).

Equation (2.9) is still valid, furthermore equation
(2.17) is valid if f is replaced by g. Hence, replacing f
by g in equation (2.17) we find

gðx1; x 2ÞZK
1

4p
ðvx1Kivx 2

Þ
ð2p
0

Jðx1; x 2; qÞeiq dq;

ð2:20Þ
where J is defined by equation (2.19). This formula is
equivalent to Novikov’s formula.

In summary, let ĝf ðr; qÞ be defined by equation (1.5),
let F (t, r, q) denote the function f (x1, x 2) written in
local coordinates (see §1.1) and let f̂ ðr; qÞ denote
the Radon transform of f (x1, x 2) (see equation (1.4)).
Then g (x1, x 2) is given by equation (2.20) where the
function J is explicitly given in terms of ĝf and f̂ by
equation (2.19).

http://rsif.royalsocietypublishing.org/
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3. RECONSTRUCTION ALGORITHM FOR SPECT

We denote the first exponential term of the right-hand
side of equation (2.19) by I (t, r, q), i.e.

I ðt; r; qÞZ exp

ð ffiffiffiffiffiffiffi
1Kr2

p

t

Fðt0; r; qÞdt0
" #

: ð3:1Þ

Note that, we assume compact support; thus the

integration domain is finite, i.e. ½t;
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2

p
� and

F (t, r, q)Z0 for jrjR1, or for jtjR
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2

p
.

Definition (2.4) becomes

PGf̂ ðr; qÞZG
1

2
f̂ ðr; qÞK i

2p
hðr; qÞ:

Moreover,

exp½PGf̂ ðr; qÞ�

Z exp G
1

2
f̂ ðr; qÞ

� �
cos

hðr; qÞ
2p

Ki sin
hðr; qÞ
2p

� �
;

exp½KPGf̂ ðr; qÞ�

Z exp H
1

2
f̂ ðr; qÞ

� �
cos

hðr; qÞ
2p

C i sin
hðr; qÞ
2p

� �
:

We introduce the following notation:

f cpeðr; qÞZ eð1=2Þf̂ ðr;qÞcos
hðr; qÞ
2p

;

f speðr; qÞZ eð1=2Þf̂ ðr;qÞsin
hðr; qÞ
2p

;

9>>=
>>; ð3:2Þ

f cmeðr; qÞZeKð1=2Þf̂ ðr;qÞcos
hðr; qÞ
2p

;

f smeðr; qÞZeKð1=2Þf̂ ðr;qÞsin
hðr; qÞ
2p

;

9>>=
>>; ð3:3Þ

f cðr; qÞZf cpeðr; qÞĝf ðr; qÞ;
f sðr; qÞZf speðr; qÞĝf ðr; qÞ:

)
ð3:4Þ

Using this notation and setting R (t, r, q)ZKJ (t, r, q),
after some calculations, equation (2.19) becomes

Rðt; r; qÞZ I ðt; r; qÞððf cmeKif smeÞðPKf c C iPKf sÞ

Cðf cme C if smeÞðPCf cKiPCf sÞÞ:
ð3:5Þ

We now set

#
N

KN

f cðr0; qÞ
r0Kr

dr0 Z hcðr; qÞ;

#
N

KN

f sðr0; qÞ
r0Kr

dr0 Z hsðr; qÞ;

thus equation (3.5) becomes

Rðt; r; qÞZKiI ðt; r; qÞ f cme 1

p
hc C2f s

� ��

C f sme 1

p
hsK2f c

� ��
:

We denote the right-hand side of this equation by
Kir (t, r, q). Taking the real part of g (x1, x 2) in
J. R. Soc. Interface (2006)
equation (2.20), we obtain

gðx1; x 2ÞZ
1

4p

ð2p
0
ðrx1 sin qKrx 2

cos qÞdq; ð3:6Þ

where t and r are given by equation (2.11) and

rðt; r; qÞZ I ðt; r; qÞ f cme 1

p
hc C2f s

� ��

C f sme 1

p
hsK2f c

� ��
: ð3:7Þ

For the numerical calculation of the Hilbert trans-
form we suppose that f̂ ðr; qÞ is given, for every q, at n
equally spaced points ri2[K1,1], i.e. we suppose

that f̂ iZ f̂ ðri; qÞ are known. Moreover, in each interval
[ri,riC1] we approximate f̂ ðr; qÞ using the relation

f̂ ðr; qÞZ Siðr; qÞ

ZAi f̂ i CBi f̂ iC1 CCi f̂
00
i CDi f̂

00
iC1; ð3:8Þ

where

Ai Z
riC1Kr

riC1Kri
; Bi Z 1KAi;

Ci Z
1

6
ðA3

i KAiÞðriC1KriÞ2;

Di Z
1

6
ðB3

i KBiÞðriC1KriÞ2;

and f̂
00
i denotes the second derivative of f̂ ðr; qÞ with

respect to r, at rZri. In other words, we approximate
f̂ ðr; qÞ by a cubic spline (in r) with equally-spaced
nodes.

We then write

hðr;qÞZ
ð1
K1

f̂ ðr;qÞ
r0Kr

dr0C

ð1
K1

f̂ ðr0;qÞKf̂ ðr;qÞ
r0Kr

dr0

Z f̂ ðr;qÞln 1Kr

1Cr

� �
C
XnK1

iZ1

ð
riC1

ri

Siðr0;qÞKf̂ ðr;qÞ
r0Kr

dr0:

ð3:9Þ

If rZri or rZriC1 the integral in the right-hand side of
equation (3.9) can be written asðriC1

ri

Siðr0; qÞKSiðr; qÞ
r0Kr

dr0:

Thus, after some calculations, we obtainðriC1

ri

Siðr0;qÞKf̂ ðr;qÞ
r0Kr

dr0ZKf̂ iC f̂ iC1

C
1

36
ð4r2i K5ririC1K5r2iC1K3ðriK5riC1ÞrK6r2Þf̂ 00i

C
1

36
ð5r2i C5ririC1K4r2iC1K3ð5riKriC1ÞrC6r2Þf̂ 00iC1:

ð3:10Þ

If rsri and rsriC1 the integral in the right-hand side
of equation (3.9) can be written asðriC1

ri

Siðr0; qÞ
r0Kr

dr0Kf̂ ðr; qÞln riC1Kr

riKr










;
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and after some calculation we obtain

hðr; qÞZ
XnK1

iZ1

FiK
1

riKriC1

ln





 riC1Kr

riKr





½ðriC1KrÞf̂ i

(

KðriKrÞf̂ iC1K
1

6
ðriKrÞðriC1KrÞððriK2riC1 CrÞf̂ 00

i

Cð2riKriC1KrÞf̂ 00iC1Þ�
)
; ð3:11Þ

where Fi is the right-hand side of equation (3.10).
Taking the real part of equation (1.6) it follows that

f (x1, x 2) is given by

f ðx1; x 2ÞZK
1

4p2

ð2p
0

hrðr; qÞdq; ð3:12Þ

where h (r, q) is defined by equation (1.9). We assume
that f (x1, x 2) has compact support, namely f (x1, x 2)Z0,
for x21Cx 2

2R1. Thus, in order to calculate numerically
I (t, r, q) for any x1, x 2, q, we use relation (3.12) and
(2.11)2 to obtain

f ðx1; x 2ÞZK
1

4p2

ð2p
0

hrðx 2 cos tKx1 sin t; tÞdt;

and consequently

Fðt;r;qÞZK
1

4p2

ð2p
0
hrðt sinðqKtÞCr cosðqKtÞ; tÞdt:

ð3:13Þ

We can now calculate F (t, r, q) following the
procedure outlined in appendix A. We then calculate
I (t, r, q) using relation (3.1) if tR0, alternatively, the
relation

I ðt; r; qÞZ exp f̂ ðr; qÞK
ðt
K
ffiffiffiffiffiffiffi
1Kr2

p Fðt0; r; qÞdt0
� �

;

ð3:14Þ

if t!0. For the numerical calculation of the integrals
appearing in equations (3.1) and (3.14) we use the
Gauss–Legendre quadrature with two functional evalu-
ations at every step, i.e.ðb

a

Fðt0; r; qÞdt0zw1Fðt1; r; qÞCw2Fðt2; r; qÞ;

where the abscissas t1, t2 and the weights w1, w2 are
given by

t1 ZaCðbKaÞ 1

2
K

ffiffiffi
3

p

6

� �
; t2 ZaCðbKaÞ 1

2
C

ffiffiffi
3

p

6

� �
;

w1 Zw2 Z
1

2
ðbKaÞ:

We also note that we have tried subdivision of the
interval (a, b) into several intervals and the improve-
ment is very minor. Therefore, we use just one interval,
i.e. two function evaluations per quadrature, since the
major increase in running time of the program implicit
in using panel quadrature is not justified by the modest
improvement in accuracy.
J. R. Soc. Interface (2006)
For the numerical calculation of the integrals in
equations (3.6) and (3.13) we use the formulað2p

0
gðqÞdqZ 2p

N

XNK1

iZ0

g
2pi

N

� �
:

For the numerical calculation of the partial derivatives
rx1 and rx 2

in equation (3.6) we use the forward
difference scheme

f 0ðxÞzK3f ðxÞC4f ðxCDxÞKf ðxC2DxÞ
2Dx

for the first half of the interval [K1,1], and the
backward difference scheme

f 0ðxÞz3f ðxÞK4f ðxKDxÞC f ðxK2DxÞ
2Dx

for the second half.
Thus, for the numerical calculation of g (x1, x 2) from

the data f̂ ðr; qÞ and ĝf ðr; qÞ we apply the following
procedure. First, we calculate the second derivatives
f̂
00
i , using subroutine spline from Press et al. (1992),

setting f̂
00
1Z f̂

00
n Z0 (i.e. we use the natural cubic spline

interpolation). Consequently, we calculate h (r, q)
using equations (3.9) and (3.10) for all given r and q.
We note that if jrijZ1 then, since we have assumed
compact support, f̂ ðr; qÞZ0, thus the first term in
equation (3.9) is absent. We then calculate f cpe(r, q)
and f spe(r, q) using equation (3.2), as well as f c(r, q)
and f s(r, q) using equation (3.4) (at this stage we use
the second data function ĝf ). Finally we calculate,
again using spline, the second derivatives for the
natural cubic spline interpolation of the functions
f c(r, q) and f s(r, q).

Having calculated all the necessary second deri-
vatives we now proceed as follows. First, we calculate
f̂ ðr; qÞ for any x1, x 2 (and q) using equations (2.11) and
(3.8). For this purpose we have used subroutine splint
from Press et al. (1992). Consequently, we calculate
h (r, q) using equation (3.11). Then, we calculate
f cme(r, q) and f sme(r, q) using equation (3.3), f c(r, q)
and f s(r, q) using splint and finally, hc(r, q) and hs(r, q)
using relations similar to equation (3.11). These last
six functions are used in equation (3.7). We then
calculate I (t, r, q) as described earlier. Finally, we
calculate r (t, r, q) using equation (3.7) and, conse-
quently, g (x1, x 2) using equation (3.6).
4. NUMERICAL TESTS

The q points are equally spaced in [0,2p], while the r

points are equally spaced in [K1,1]. The density plots
presented below were drawn by using MATHEMATICA

(Wolfram 1999). The dark colour represents zero (or
negative) values while the white colour represents the
maximum value of the original (or reconstructed)
function.

First, we tested the PET algorithm for the three
different phantoms shown in figure 3. Figure 3a,b were
taken from Kunyansky (2001) and Guillement &
Novikov (2004), respectively. These figures depict the
X-ray attenuation coefficient for a function f (x1, x 2)
modelling a section of a human thorax. The small circles
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(a) (b) (c)

Figure 4. The reconstruction of the phantoms of figure 3 before the filtering procedure.

(a) (b) (c)

Figure 5. The reconstruction of the phantoms of figure 3 after the filtering procedure.

(a) (b) (c)

Figure 6. Test phantoms for the SPECT algorithm. In (a) and (b) the function f (x1, x 2) is given by figure 3a, while in (c) the
function f (x1, x 2) is given by figure 3b.
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represent bones and the larger ellipses the lungs.
Figure 3c is the well-known Shepp–Logan phantom,
which provides a model of a head section. All these
phantoms consist of different ellipses with various
densities.

Using the Radon transform (1.4), we computed the
data function f̂ ðr; qÞ for 200 points for q and 100 points
for r. This computation was carried out by using
MATHEMATICA. We then used these data in the
numerical algorithm to reevaluate f (x1, x 2). Further-
more, in order to remove the effect of the Gibbs–
Wilbraham phenomenon, we applied an averaging filter
as follows. We first found the maximum value (max) of
f (x1, x 2) in the reconstructed image. We then set to zero
those values of f (x1, x 2), which were less than 1/20 max.
Finally, we applied the averaging filter with averaging
parameter aZ0.005. This filtering procedure was
applied five times, with the additional elimination of
those values of f (x1, x 2), which were less than 1/20 max
at the end of the procedure. In figures 4 and 5 we
present the results before and after the filtering
procedure, respectively. The reconstruction took place
in a 500!500 grid.
J. R. Soc. Interface (2006)
We then tested the SPECT algorithm for the three
different phantoms shown in figure 6. Figure 6a,b were
taken from Kunyansky (2001). In these cases the
function f (x1, x 2) is given by figure 3a. Figure 6c was
taken from Guillement & Novikov (2004). The white
ring represents the distribution of the radiopharma-
ceutical at the myocardium. In this case the function
f (x1, x 2) is given by figure 3b.

By using the Radon transform (1.4) and the
attenuated Radon transform (1.5), we computed the
data functions f̂ ðr; qÞ and ĝf ðr; qÞ for 200 values of q and
100 points of r (again using MATHEMATICA). We
consequently used these data in our program to
reconstruct g (x1, x 2). In order to remove the effect of
the Gibbs–Wilbraham phenomenon, a median filter
was used, with the additional elimination of those
values of g (x1, x 2), which were less than 1/20 max
before and after the application of the filter. The results
are shown in figures 7 and 8, before and after the
filtering procedure, respectively. The reconstruction
took place in a 140!140 grid.

For the above phantoms it seems that even a rough
estimation of F (t, r, q) is sufficient for an accurate
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Figure 7. The reconstruction of the phantoms of figure 6 before the filtering procedure.

(a) (b) (c)

Figure 8. The reconstruction of the phantoms of figure 6 after the filtering procedure.
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reconstruction. This means that, in order to compute
numerically F (t, r, q) using equation (3.13), it is
sufficient to use 10 equally spaced points for t, rather
than 200. This reduces considerably the reconstruction
time.

V.M. was supported by a Marie Curie Individual Fellow-
ship of the European Community under contract number
HPMF-CT-2002-01597. A.S.F. acknowledges support from
EPSRC. We are grateful to Prof. B. Hutton for useful
suggestions.
APPENDIX A

The function f (x1, x 2) is given by equation (3.12).
Integrating the spline (3.8), we derive a well-known
quadrature formula which, in our setting, reads

hðr; qÞZ
XnK1

iZ1

ð
riC1

ri

Siðr0; qÞ
r0Kr

dr0:

Following straightforward calculations we obtain

hrðr;qÞZ
XnK1

iZ1

f̂ i
riKr

K
f̂ iC1

riC1Kr
K1

4
ðriK3riC1C2rÞf̂ 00i

(

K
1

4
ð3riKriC1K2rÞf̂ 00iC1

C
f̂ iKf̂ iC1

riKriC1

K
1

6
riKriC1K

3ðriC1KrÞ2

riKriC1

� �
f̂
00
i

"

C
1

6
riKriC1K

3ðriKrÞ2

riKriC1

� �
f̂
00
iC1

�
ln





riC1Kr

riKr






)
:

ðA 1Þ
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Thus, in order to calculate numerically f (x1, x 2) from
the data f̂ ðr; qÞ we first compute the second derivatives
f̂
00
i using subroutine spline. Then, for any x1 and x 2,
we calculate (for any q) r using equation (2.11)2
and hr(r, q) using equation (A 1). Finally we calculate
f (x1, x 2) using equation (3.12).

We note that equation (A 1) contains the term

ln
riC1Kr

riKr










:

However, since for the reconstruction the number of the
points for x1 and x 2 can be different than the number of
the r points, in general rsriC1 and rsri.
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